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Laboratoire des Solides Irradiés, École Polytechnique, 91128 Palaiseau Cedex, France

Received 24 June 2002 / Received in final form 15 October 2002
Published online 6 March 2003 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2003

Abstract. We previously [Coddens, Phys. Rev. 63, 064105 (2001)] derived a theorem about the coherent
quasielastic neutron-scattering signal from a d-dimensional lattice of N molecules that are undergoing
rotational jump diffusion (around an n-fold axis), assuming that there are no correlations between the
molecules. In the present paper molecular correlations are treated, but only in the sense that several
molecules could reorient simultaneously as in a cog-wheel mechanism. Moreover, we do not examine the
possibility that the relaxation times of these combined reorientations could depend on details of the local
environment created by the neighbouring molecules. Finally also an ergodicity condition has to be fulfilled.
Admitting for all these assumptions we can show that the correlations do not affect the coherent quasielastic
scattering pattern in the following sense: The functions of Q that intervene in the description of the
intensities remain unaltered, while the functions of ω can undergo a renormalization of the time scales.
The latter changes cannot be detected as the time scales that would occur if the dynamics were independent
are not available for comparison. In other words: Coherent quasielastic neutron scattering is not able to
betray the existence of correlations of the restricted type that occur in our model. The assumptions that
underly the model we present were made to allow a mathematically rigorous calculation of the scattering
function. Other, perhaps more realistic cases may entail correlations of a type that is too difficult to
be treated rigorously with our method of calculation. But our result presents an important non-trivial
counterexample to show that the absence of a clue for the presence of correlations in the data is not a
sufficient criterium to conclude that such correlations are indeed absent.

PACS. 61.12.Ex Neutron scattering (including small-angle scattering) –
87.64.-t Spectroscopic and microscopic techniques in biophysics and medical physics –
66.30.Dn Theory of diffusion and ionic conduction in solids

1 Introduction

In a recent paper [1] we calculated the coherent quasielas-
tic neutron-scattering signal [2–4] that results from n-fold
rotational jumps of N molecules periodically arranged on
the sites of a d-dimensional solid-state lattice, by applying
a previously described method [5]. The jumping molecules
themselves do not need to have n-fold symmetry. As a
physical visualization of the present problem we could
mention the array of nonadecane molecules hosted by an
urea inclusion compound [6]. (Such molecules have CH3

end groups of three-fold symmetry, but the entire molecule
has no such symmetry.)

In a first approach, we assumed that the molecules are
jumping independently, leaving open the question: What
could happen if the relaxational motions of neighbour-
ing molecules cease to be uncorrelated? We anticipated
that in that case coherent quasielastic neutron scatter-
ing might be able to evidence possible correlations. In the
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present paper we address this possibility, understanding
the word correlation in the sense that within connected
sets of a given size and shape all molecules jump simul-
taneously in some phase or anti-phase relations, like in a
cog-wheel mechanism. In the paper we will use the word
“clusters” to refer to these sets. Assuming further that the
relaxation times for these combined jumps do not depend
on the momentaneous orientations of the molecules inside
(and outside) the cluster, we come to the astounding (and
disappointing) conclusion that such correlations do not
leave a fingerprint in the structure factors of the ensuing
coherent dynamical signal. (See the abstract or below for
a more precise formulation of the restrictions.) In other
words: It is impossible to decide if such correlations are
present and to determine their nature on the mere basis of
the corresponding coherent quasielastic neutron scattering
data.

Let us point out where the surprise lies. Quite often, if
we calculate the total structure factor for such dynam-
ics within a single isolated cluster, we will be able to
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detect the presence of such correlations, as we do not find
the same answer as for the jump dynamics of a single
molecule. Even when the cluster is not isolated, highly cor-
related rotors still can be expected to manifest themselves
very differently in reciprocal space than independent ro-
tors, e.g. in a linear chain anticorrelated configurations
produced by the dynamics would manifest themselves at
the Q-value corresponding to the zone boundary of the re-
ciprocal lattice. Indeed, the correlated dynamics can give
rise to static correlations between the orientations of the
molecules, that should be observable. How is our result
then possible? This question resumes one of the counter-
intuitive aspects of our result.

The crucial point is that the clusters we consider can
be centered on any point of the crystal lattice, such that
two clusters situated on neighbouring points can overlap.
If the cog-wheels of two such points have ground in suc-
cession then the rotations involved in the second move
will partly undo the static correlations that existed be-
tween the molecules after the first move. In such kind of
dynamics the correlations are no longer as all-out that
we can call them “ferro” or “anti-ferro” (as in the exam-
ple of anti-correlated configurations above). To complicate
things further, they are not necessarily zero either. They
can be of an intermediate strength. How the story goes
further, really will depend on the specific dynamics de-
fined within the cog-wheel mechanism. E.g. it is conceiv-
able that in certain dynamical models the memory of the
initial static correlations in a single cluster (or in the crys-
tal), eventually are totally washed out with time, due to
the actions from overlapping clusters. We then have a dif-
ferent situation than the one evoked for a problem of an
isolated cluster where the static correlations might persist
indefinitely. Equally conceivable are other models, where
such a total loss of memory does not occur.

We will distinguish two mutually exclusive possibili-
ties: (1) The loss of memory with time is total, such that
starting from any initial configuration that one could ob-
tain by independent dynamics we can move to any other
configuration that could be obtained by independent dy-
namics. We will call this the ergodic case. (2) On the con-
trary, in the non-ergodic case not all configurations can
be reached. The configuration space that applied for the
independent dynamics then splits up in several disjoint
subsets. Only one of these is the set of possible states of
the sample under study. All other states just do not exist
in the sample.

Neutron scattering calculations involve an average over
all possible initial states. In the ergodic case, this averag-
ing will run over the same set of initial states as in the
case of independent dynamics. In the non-ergodic case,
the set is smaller. We are able to prove that this kind of
averaging over all possible configurations of the molecules
in the ergodic case is able to remove the signature of a cor-
relation that was present in the dynamics of an isolated
cluster in reciprocal space, i.e. we recover the result for a
single molecule. In the non-ergodic case, we average over
a smaller set of possible states. This kind of weaker aver-
aging does not permit us to assert that we would recover

the result for a single molecule. That is the result of our
paper.

At this point it is perhaps instrumental to summarize
the situation at the hand of an example. Let us take a
linear chain whose 2N molecules can take only two orien-
tations (which we can call pseudospins). We suppose that
the dynamics is given by some rule that two neighbour
sites can flip simultaneously their pseudospins (by two-
fold rotations). If this rule defines permanent dimers in
the sense that only molecules 1+2, 3+4, 5+6, etc. can turn
simultaneously, then we are in the presence of a strong
correlation. The presence of such dimers is immediately
obvious on an instaneous photograph of the system and
will leave an unmistakeable fingerprint in the dynamics.
That is the case we are all familiar with.

We render the situation far more subtle by allowing
the dimers to be dissociated by the effects of overlapping
clusters. Let us first consider a simultaneous flip of the
molecules on sites 1 and 2 (starting from a completely
aligned configuration). That introduces a correlation. Now
assume that an analogous flip involving sites 2 and 3 fol-
lows. Will this remove the “correlation”, as the “image”
of the initial “dimer” has been destroyed? The answer is
(here) that some less obvious correlation remains. Due to
the construction of the model there will always be an even
number of flipped pseudospins. How weak it ever might be,
this is a (static) correlation that will never disappear from
the model. In fact, due to the persistence of these static
correlations, the system is not ergodic and does not fulfil
the assumptions that are underlying our paper. But in this
very specific case it happens that we can actually prove
that the model does not yield the same neutron answer
as a system with totally uncorrelated molecules. One can
easily check this by using our method of calculation on a
model with a small (even) number of pseudospins (e.g. 4)
and exploiting the fact that the configuration space for
the uncorrelated case splits into two disjoint subsets when
we introduce the dynamical correlations. But if in another
type of dynamical model the configuration space were not
to split, then we will be able to assert with certainty that
the dynamical signal will not offer clues as to the presence
of the dynamical correlations.

2 Motivation of the use of our method

The reader might find the mathematical leap we will take
to configuration space too cumbersome and too much of a
fuss to his taste. Is all this really necessary? Part of the an-
swer may reside in the following warning against a possible
confusion. Consider the following argument. When we in-
spect an instantaneous photograph of an ergodic system,
the orientations of the molecules will in general look com-
pletely random. From this observation it takes only one
step to argue that the “correlations are random”. Would
that not show that our result is trivial? [7] The problem
is that the word “correlation” occurs with several differ-
ent meanings in this context. The (spatial) static correla-
tions between the orientations of the molecules that would
be visible in an instantaneous photograph of the sample
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may well be random1. However, the instant dynamical (or
temporal) correlations are not random, as they tie up a
well-defined set of molecules into a cog-wheel.

To avoid confusion, it is thus important to realize that
the word correlation can intervene with two entirely dif-
ferent meanings in the discussion and in the mind of the
reader. We have static orientational correlations between
the molecules of the whole crystal that we may detect in a
snapshot of the system. We call such snapshots configura-
tions. These static correlations are the ones that matter in
structural diffraction techniques. One will run into trouble
if one does not properly sort out for oneself that moving
to a dynamical context implies that it is no longer these
static correlations within one snapshot that are the impor-
tant quantities: We have to consider temporal correlations
between pairs of such snapshots at all possible times. The
cog-wheel mechanism defines dynamical correlations be-
tween molecules within a (small) cluster, in the sense that
it tells you which molecules will turn simultaneously and
how they will turn. The dynamical correlations are the
ones that really count, not the static ones, although the
dynamical correlations give of course rise to static cor-
relations. In view of this remark, the loose phrasing “in
the presence of correlations” appears thus as fraught with
ambiguity.

An important aspect of our method is that it develops
a precise mathematical tool that permits to account for all
kinds of details that can arise in an argument about cor-
relations in a very clear and rigorous way. The examples
of the correlations that persist on a linear chain despite
the dissociation of the dimers and of the fallacy based
on the ambiguous use of the phrasing “random correla-
tion” as sketched above may serve to show how dangerous
it is to underestimate the difficulty of deciding on one’s
mere intuition if a correlation is present within a system
or otherwise, and how discussing such matters in informal
language can seed confusion.

3 Possible domains of application of this work

3.1 Scope of experimental probes

We are presenting our work in terms of a coherent neu-
tron scattering problem, but the formalism will also apply
to other microscopic techniques, provided the scattering
is really coherent and the technique allows to obtain a Q-
dependence. Coherent scattering does not only occur with
neutrons when the nuclei have an important coherent scat-
tering cross-section. In contrast with neutron scattering,
where the nuclei can have both a coherent and an inco-
herent scattering cross section, X-ray and light scatter-
ing processes move the electrons and will uniquely lead to
coherent scattering. Good candidates for applications are

1 In diffraction studies static correlations lead to diffuse scat-
tering. [8] It is perhaps tempting to invert this implication in
the sense that absence of static correlations implies absence
of diffuse scattering, but this is not correct in the dynamical
problem.

thus also quasielastic X-ray scattering and light scattering.
In such techniques the Q-range tends to be small (Q ≈ 0),
but a lot of progress has been made in the last decade in
inelastic X-ray scattering techniques using synchrotron ra-
diation, rendering available large Q-values combined with
good energy resolution (≈1 meV) [9]. When there is no en-
ergy information, the energy-integrated quasielastic scat-
tering will still yield the Q-dependence of the diffuse scat-
tering.

Extremely high resolutions can be obtained with the
so-called speckle technique which allows one to study re-
laxation on a time scale of the order of 15 minutes [10]!
Very good resolutions (neV) can also be obtained by nu-
clear resonance methods using synchrotron radiation [11]
(e.g. exciting the 14.41 keV Mössbauer level of 57Fe), but
in general this is an incoherent process (as in this process
the radiation is temporarily absorbed exciting a nucleus
rather than instantaneously re-emitted by the electrons
as dipole radiation). Under certain experimental condi-
tions the process can nonetheless be coherent, but then
the quasielastic scattering has to be detected against a
very strong background of elastic scattering.

3.2 Scope of experimental phenomena

Coherent quasielastic neutron scattering studies are rare
and this is certainly due to the difficulty of treating
the problem theoretically. Incoherent quasielastic neutron
scattering can often be modeled by a system of coupled
rate equations, that one can solve analytically. But de-
scribing correlations, as probed by coherent quasielastic
scattering, along such lines proves difficult. One solution
to this problem is to drop the ideal of an analytical de-
scription all together and to make Monte Carlo [12] or
molecular dynamics [13] simulations, but then fitting some
variable parameters of the model to the experimental data
will no longer be possible.

There are two main categories of stochastic motion
that lead to (non-magnetic) quasielastic scattering, viz.
translational diffusion and rotational relaxation2. Our pa-
per does not deal with translational diffusion. There exists
a generalization of the Chudley-Eliott model that permits
to calculate the coherent quasielastic neutron scattering
signal for translational jump diffusion on a lattice. But
this is an average description in that it is based on rate
equations which rely on the assumption that the concen-
trations are rigorously homogeneous throughout the sam-
ple [15]. For the sake of completeness we refer the reader
interested in theoretical aspects of translational diffusion
to references [12] and [16]. The bulk of the experimental
efforts have focused on the diffusion of D in NbDx [17]
and other metals [18], Ag in silver halides [19] and in
Ag2Se [20], Rb in RbAg4I5 [21], Na in Na3PO4 [22], Li
in Li2SO4 [23] or in LiAlSiO4 [24], oxygen in UO2 [25],
F in fluorites [26], various molecules in zeolithes [27], va-
cancies in zirconia-stabilized Y2O3 [28], Ga [29] in grain
boundary layers, and Cl in SrCl [30].

2 In molecular liquids both occur simultaneously and they
can be coupled [14].
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What kinds of rotational relaxation is our paper then
able to address? Let us immediately state that our model
may not have a perfect counterpart in the real world, in
the sense that the correlations that occur in a real sys-
tem might be slightly different from what we are able to
cover by our assumptions (see e.g. the remark on CD3H
below). It is a requirement of not breaking translational
symmetry in configuration space that imposes the under-
lying assumptions of our paper. If these are not met, the
calculation of the correlations becomes of a difficulty that
is far beyond the methods we use.

We noted at the beginning of the Introduction that the
rotating molecules do not need to have the symmetry of
the potential wherein they perform the rotational jumps.
This is important. If the symmetry of the molecules is the
same as the symmetry of the jump, then the sample will
look the same after the jump as before the jump. This
means that the Fourier transform of the molecules can be
factorized out in the calculations and we do not need to
go through the more difficult approach of our paper3.

Combining these two limitations of feasibility and tech-
nical interest, the geometry of the nonadecane molecules
is instrumental for visualizing the problem that we can
treat, and for describing the (restricted) kind of corre-
lations that we have in mind. The physical correlations
between the nonadecane molecules that are really experi-
mentally observed in the urea inclusion compound are of
a different nature [34], which we are unable to treat (al-
though this was not yet clear at the time we started this
work). But this kind of correlations could exist in another
system. The major lesson from our exercise must be that
we give a non-trivial counter-example that indicates how
coherent quasielastic neutron scattering may not always
yield the information one expects on the basis of com-
monly accepted notions.

In our method the configuration space for the single-
molecule dynamics is one-dimensional. It is however pos-
sible to generalize the formalism such as to recover also
higher-dimensional single-molecule configuration spaces4.
This broadens the scope of possible applications further
to three-dimensional rotations of molecules whose sym-
metry is not the same as that of the rotation symmetry.
An example of such cases would be the rotational jumps
of molecules of tetrahedral symmetry containing different
isotopes (such that the symmetry is broken) as e.g. CH3D,
CD3H, CH2D2, NH3D, C79Br381Br, C79Br281Br2 [31],
CBr2Cl2 [35], CBrCl3 [35], etc. However in the physical
world these molecules do not necessarily give rise to solids
where our type of problems are encountered. In partially
deuterated methane the physics is just different: Bulk
CH3D and CD3H are either close to rotational diffusion, or
there is quantum behaviour. In partially deuterated am-

3 Unless the dynamics is more complicated than a simple
rotational jump model, due to supplementary problems such
as translation-rotation coupling [31–33] etc.

4 We will not give this derivation in order not to burden the
paper. The proof runs as for the one-dimensional case mutatis
mutandis.

monia, the existence of exchange of D and H between the
molecules complicates the picture.

Also octahedral molecules could be considered5. Fi-
nally, an important application of our result could be C60.
The (coherent) quasielastic neutron scattering signal of
the rotational dynamics of this molecular crystal in its
room temperature phase has been successfully described
in terms of a model of completely independent rotors by
Neumann et al. [36]. Although our results have been de-
rived for rotational jumps rather than for continuous ro-
tations as occur in C60, they suggest by analogy that it
cannot be claimed with certainty on the basis of the sole
neutron data of Neumann et al. that the molecules would
be totally independent.

4 Method

The general method we use has been already described
previously [1,5]. The idea is to formulate the problem
in configuration space. The instantaneous configuration
of the whole system is an abstract particle that diffuses
on a network in this configuration space. The vertices of
the network are the possible configurations of the system.
When one single particle of the system makes a jump with
a relaxation time τ , we say that the system “jumps” be-
tween two configurations with the relaxation time τ . Two
configurations that are linked by such a move of one par-
ticle are connected by a line of the network carrying a
label τ . The dynamics of our system is this way mapped
isomorphically onto the problem of the diffusion of a single
abstract particle (the system) on a network in configura-
tion space. The only difference is that the embedding con-
figuration space is of considerably higher dimension than
physical space.

The physical problem can thus be described in terms of
a set of coupled rate equations d

dt P = 1
τ MP, where the

column vector P(t) contains the probabilities pc(t) that
the system is in configuration c at time t, τ is a relaxation
time, and M is the so-called jump matrix. The Van Hove
formalism deals however with probabilities for particles:

[
d2σ

dΩdEf

]
coh

=
kf

ki

1
2π�

∫ ∞

−∞
e−ıωt

∑
j,k

[
b
(coh)
j

]∗ [
b
(coh)
k

]

× 〈eıQ·(rk(t)−rj(0))〉th dt. (1)

Here b
(coh)
j is the coherent scattering length of nucleus

j. The indices j et k run through all the nuclei of the
physical system considered. These nuclei are situated at
position vector rj(t) at time t; �ki, �kf are the initial
and final momentum vectors of the scattered neutron and
Q = kf − ki is the momentum transfer; �ω = Ef − Ei

is the energy transfer. Finally, 〈·〉th stands for a thermal

5 A good example would be SF6, if it were not that the nat-
ural element fluorine is mono-isotopic (19F), such that the sim-
plification mentioned above can be applied [32].
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average. The total scattering function is defined by:

S(Q, ω) =
1
2π

∫ ∞

−∞
e−ıωt

∑
j,k

〈eıQ·(rk(t)−rj(0))〉th dt

=
1
2π

∫ ∞

−∞
e−ıωt S(Q, t) dt. (2)

It is the spatio-temporal Fourier transform of the Van
Hove correlation function, which expresses the probabil-
ity to find a particle at r at time t if the same or another
particle is present at 0 at time 0:

S(Q, ω) =
1
2π

∫ ∞

−∞
e−ıωt

∑
j,k

b∗j bk〈eıQ·(rk(t)−rj(0))〉thdt

(3)

where we have taken the liberty to include the scattering
lengths into the definition of S. To make contact with a
formalism based on configurations we define

F(Q, t) =
∑

k

bk eıQ·rk(t)

=
1

(2π)3

∫
R3

eıQ·r ∑
k

bk · δ(r − rk) dr (4)

then∑
j,k

b∗j bk 〈eıQ·(rk(t)−rj(0))〉th = 〈F(Q, t)F∗(Q, 0)〉th (5)

where F(Q, t) is nothing else than the spatial Fourier
transform of a configuration of Dirac measures of weight
bk put into the positions rk. We obtain then:

S(Q, ω) =
1
2π

∫ ∞

−∞
e−ıωt 〈F(Q, t)F∗(Q, 0)〉th dt. (6)

The thermal average is:

〈F(Q, t)F∗(Q, 0)〉th =
∑
j,k

Fj(Q) pj,k(t)F∗
k (Q). (7)

In contrast with the preceding equations the dummy vari-
ables j, k are now running over all possible configurations
rather than over all nuclei; pj,k(t) are the probabilities
that the system is in configuration j at time t if it was in
configuration k at time 0. The formal solution is worked
out in reference [1] and does not contain further surprising
steps or new ideas: By diagonalizing M = SΛS−1, we can
write the solution of this set of coupled linear differential
equations as P(t) = S exp (Λt/τ)S−1 P(0). By plugging
in the various initial conditions into P(0), we obtain then
the full set of probabilities pj,k(t) that the system is in
configuration j at time t if it was in configuration k at
time 0. As already stated, these are the quantities that
are needed. For the thermal averaging we must consider
all possible initial configurations P(0). (All these column
vectors can be compounded into a square matrix, which
in general will be a multiple of the unit matrix.) A proper

choice of initial conditions will also take into account the
thermal occupation factors, i.e. entail the required ther-
mal averaging. The total scattering function is obtained
from the spatio-temporal Fourier transform of the thermal
average of the correlation functions. By writing in addition
the right hand side of equation (7) in matrix form, we ob-
tain the final expression for the total scattering function,
which reads: S(Q, ω) = 1

nN FS F( eΛt/τ ) S† F†, where F
is the row matrix that contains the spatial Fourier trans-
forms Fc(Q) of the configurations c (obtained by putting
a Dirac measure of weight bx at the position of each atom
of type x as explained above); F in F( eΛt/τ ) stands for
the temporal Fourier transform. The normalization fac-
tor 1

nN is here written for the case of uncorrelated n-fold
rotational jumps of N molecules.

5 Formulation of the jump matrix

When there are no correlations between the molecules,
the configuration space for the n-fold rotational jumps
of N molecules on a lattice L ⊂ R

d (d ∈ {1, 2, 3}),
e.g. L = ( [1, �] ∩ N )d, N = �d, will be a hypercubic
lattice [37] H = ( Z/n )N with cyclic boundary condi-
tions in R

N . (Each particle adds one dimension to con-
figuration space: E.g. if there were just two molecules
(N = 2) that make threefold rotational jumps (n = 3),
the configuration space would be the square lattice of
the nN = 32 = 9 points (1, 1), (1, 2), ...(i, j), ...(3, 3). The
configuration (i, j) corresponds then to the situation that
particle 1 has orientation i and particle 2 orientation j.
The boundary conditions are cyclic as each particle can
go through the successive orientations 1 → 2 → 3 → 1
as the particles never collide. This is different for trans-
lational motions, for which the configuration space there-
fore has boundaries. It is for this reason that our approach
cannot be applied for translational motion.) For a three-
dimensional sample (d = 3), the position vectors of the
molecules will be ( jx, jy, jz ) ∈ L. The jump matrix M is
then defined by:

Mc;d = −2N δc;d +
∑
j∈L

(
δc;d+ej

+ δc;d−ej

)
. (8)

The reader should not feel intimidated by the few very
concise notations of this type that occur in the paper.
They are mainly given for the sake of completeness. The
main point he should capture is at which points in the
jump matrix there are non-zero entries and how they
look like. Equation (8) is built up as follows. There is
a unit vector e j in hypercubic space associated with each
molecule (with position vector j) that can turn: As we il-
lustrated with the example of two particles above, each
molecule adds a dimension to configuration space. When
we start from a configuration c and the molecule j makes
a rotational jump, the system goes to the configuration
d = c + e j. Hence, in the absence of correlations, a con-
figuration c ∈ H has 2N neighbours d = c ± e j, where
j = ( jx, jy, jz ) ∈ L: At the line corresponding to c in
the jump matrix there are thus non-zero entries at all
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columnar positions corresponding to the configurations
d = c + e j and d = c − e j, a fact which is expressed
through the presence of the Kronecker delta’s δc;d+ej

and
δc;d−ej

. The diagonal terms follow from these terms as in
any other jump matrix for a diffusion problem.

The unit vectors e j are the generators of the hypercu-
bic lattice H, and each configuration c accessible can be
written as c =

∑
j c j e j, with c j ∈ Z/n. The hypercubic

lattice H represents all possible configurations that can be
obtained by n-fold rotations, and therefore the configura-
tion space when there are correlations will be a sublattice
S ⊂ H of H6.

It is logical that we assume that due to the range of the
intermolecular interactions, the set or cluster of jumping
molecules extends to a neighbour shell of a certain order.
Due to the translational invariance on the physical lattice
L, this cluster should be allowed to occur at every lattice
site j ∈ L. A configuration c will now be connected to
other configurations c±vj, j ∈ L on the sublattice S, than
c±ej, j ∈ L as for the independent dynamics, and it is the
set of ν relative position vectors vj that has to be defined.
E.g. if on a two-dimensional square lattice L = ( [1, �]∩N )2
with cyclic boundary conditions, the jump of a molecule
at ( jx, jy ) over 2π/n is always accompanied by opposite
jumps over −2π/n of its four first neighbours, then ν = �2

and

v (jx,jy) = e (jx,jy) − e (jx+1,jy) − e (jx−1,jy)

− e (jx,jy+1) − e (jx,jy−1), ∀( jx, jy ) ∈ L, (9)

where the minus signs translate the fact that the rota-
tions are opposite. We can understand this by decompos-
ing the combined move into a succession of single-molecule
jumps: We first turn the molecule (jx, jy), which changes
the configuration from c to c + e (jx,jy). Then we turn
the molecule (jx + 1, jy), which changes the configura-
tion further from c + e (jx,jy) to c + e (jx,jy) − e (jx+1,jy),
etc... upto the final configuration c + v (jx,jy). The order
in which we take these individual moves is not important,
as in the combined move of the five molecules the system
does not visit the intermediate configurations and goes
immediately from the initial (c) to the final configuration
(c+v (jx,jy)). On our network there will be a line that con-
nects these two configurations and which will be labeled

6 We would like to stress that there is no underlying assump-
tion related to representing the various configurations as points
on a hypercubic lattice, for the mere convenience of enumerat-
ing them more easily. This also true when the rotors are not
independent. More specifically, it does not imply any factoriza-
tion of probabilities as we would have in the case of indepen-
dent rotors. The probabilities will be given by the topological
connectivity of the network or graph that links these points.
These lines could be very different from the edges of the hy-
percubes of the hypercubic lattice that occur in the case of in-
dependent dynamics. The probability for a jump between two
configurations is taken into account by connecting the points
that represent them by a line labeled with its relaxation time.
Only if these probabilities themselves were factorized would we
have an underlying independence.

by τ . Of course the relaxation time τ we use now has
no longer any relationship whatsoever with the relaxation
times we used in the problem of independent dynamics. It
is the relaxation time for a cluster, not for a molecule, and
the probabilities we are dealing with here can in principle
not be expressed as a product of probabilities as would
occur if the rotors were independent7. The ν = �2 vec-
tors vj, j = ( 1, 1 ), ( 1, 2 ), . . . ( �, � ) are the generators of
the sublattice S. Using the hypercubic norm, we see that
‖ v (jx,jy) ‖= 5.

As a second example, we could also imagine that each
molecule at (jx, jy) has (for symmetry reasons) four equiv-
alent alternatives to jump simultaneously with a single
first neighbour. Then ν = 4 �2 and ∀(jx, jy) ∈ L:

v (jx,jy),1 = e (jx,jy) − e (jx+1,jy), (10)
v (jx,jy),2 = e (jx,jy) − e (jx−1,jy),

v (jx,jy),3 = e (jx,jy) − e (jx,jy+1),

v (jx,jy),4 = e (jx,jy) − e (jx,jy−1).

Here ‖ v (jx,jy),r ‖= 2 ( r ∈ {1, 2, 3, 4} ). We see thus that
in the general situation with correlations the jump matrix
M will be defined by

Mc;d = −2Nρ δc;d +
∑
j∈L

ρ∑
r=1

(
δc;d+vj,r

+ δc;d−vj,r

)
,

(11)

where ρ = ν/�d is the number of different types r of clus-
ters per lattice site that can turn (i.e. ρ = 4 in the example
of Eq. (10)). The definition of equation (11) is analogous
to the one in equation (8) with each vector ej replaced by
ρ vectors vj,r. We can more generally assume that the var-
ious possibilities labeled by r lead to different time con-
stants. Drawing in the time constants into M the jump
matrix becomes:

Mc;d =
ρ∑

r=1

1
τr


−2Nδc;d +

∑
j∈L

(
δc;d+vj,r

+ δc;d−vj,r

) .

(12)

This notation can be further generalized by noticing that
r corresponds to a difference (or translation) vector t ∈ L,∑

r → ∑
t∈L. We must then admit that for many values

of t, we will have 1
τt

= 0, or replace t ∈ L by t ∈ G where
G is a physical cluster:

Mc;d =
∑
t∈G

1
τt


−2Nδc;d +

∑
j∈L

(
δc;d+vj,t

+ δc;d−vj,t

) .

(13)

7 It must be obvious that the occurrence of a cluster is prob-
abilistic: The model of equation (9) is perhaps best seen as
part of a larger model wherein e.g. a molecule has some prob-
ability to turn alone, some probability to turn as given by
equation (9), and some probabilities to turn even within other
types of clusters (see e.g. Eq. (20) below).
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λk = −2�2 +2 cos

�
2π

n

�
k (1,1) − k (1,2) − k (1,�) − k (2,1) − k (�,1) + 3

� �

+2 cos

�
2π

n

�−k (1,1) + k (1,2) − k (1,3) − k (2,2) − k (�,2) + 3
� �

...

+2 cos

�
2π

n

�
k (jx,jy) − k (jx+1,jy) − k (jx−1,jy) − k (jx,jy+1) − k (jx,jy−1) + 3

� �

...

+2 cos

�
2π

n
− k (1,�) − k (�−1,�) − k (�,1) − k (�,�−1) + k (�,�) + 3 )

�
, (15)

We have just given some examples of possible corre-
lations. In the present paper we will not further insist on
writing down a general formalism that would cover all pos-
sible cases. First of all, there are too many possibilities.
Secondly, we think that a general abstract formalism in
configuration space [38] (which typically has a dimension
≈ 1024) with notations of the rather elaborate type that
occur in equation (11–13), might easily conceal the rather
simple ideas behind our method. We will therefore rather
proceed by illustrating the method for examples of the
type given, in order to familiarize us with its spirit.

6 The problem of ergodicity

Since the hypercubic norms of the vectors vj are by def-
inition larger than 1 in the presence of correlations, one
would be inclined to think that S will always be a strict
subset of H, which we expressed by saying that our dy-
namical problem is no longer “ergodic”. The real situation
is more subtle. Taking the possibility of non-ergodicity se-
riously is a difficult task that we are unable to treat rig-
orously in general. One can develop a physical argument
to put forward the idea that we can relax the condition
of ergodicity to a weaker criterium of local (as opposed to
global) ergodicity. For the main stream of the paper we will
henceforth assume ergodicity. But despite the fact that we
devote here only a few lines to this assumption, we must
stress that ergodicity is a vital issue for the validity of the
calculations in the rest of the paper.

7 Solution of the jump model in the ergodic
case

When the system is ergodic, we can immediately use
the eigenvectors we already established for H in refer-
ence [1], and we will be able to derive without effort
the eigenvalues from the form of vj,r, j ∈ L. Indeed,
when the system is ergodic then the jump matrix in con-
figuration space has translational symmetry along each
of the directions defined by the N unit vectors ej that
span H. The eigenvectors are therefore just N -dimensional

Bloch waves, i.e. nN × 1 column matrices V(k) defined by
[V(k) ]c = exp [ ı 2π

n (k − k0) · (c − k0) ], ∀c ∈ H. Here k0

stands for (1, 1, 1, . . .1, 1) ∈ R
N and is introduced to take

into account the fact that the expression for the eigen-
vectors features the quantities kξ and cξ always under
the form of linear combinations (kξ − 1), and (cξ − 1).
The N -dimensional Bloch wave is obtained as a Kro-
necker product of N one-dimensional Bloch waves, just
as a three-dimensional phonon can also be written as a
Kronecker product of three one-dimensional Bloch-waves.
(Each one-dimensional Bloch wave is a n× 1 column ma-
trix.) Combining these eigenvectors with the definition of
the nN × nN jump matrix M in equation (11) yields the
corresponding eigenvalues:

λk = −2ρN + 2
∑
j∈L

ρ∑
r=1

cos [vj,r · (k − k0 ) ] . (14)

This is exactly analogous to the way the eigenvalues of a
phonon problem are obtained by operating the dynamical
matrix on the Bloch wave eigenvectors. We just calculate
MV(k) using the definitions of M and V(k) and check
that the result can be rewritten as λ(k) V(k) for some value
λ(k). For the phonon case in text books, this calculation is
usually only written for a general line of the column matrix
that represents the eigen vector, with the possible effect
that the argument might not be recognized as perfectly
analogous to the one we are dealing with here. E.g. in the
case of equation (9) we have N = �2, ρ = 1, ∀j ∈ L :
k0 ·vj = −3, such that equation (14) is more explicitly
seen to yield

see equation (15) above,

where k = ( k (1,1), k (1,2), . . . k (jx,jy), . . . k (�,�) ), and
k (jx,jy) ∈ Z/n. There are thus n�2 k-vectors in the case of
equation (9). In fact, a general configuration c has �2 vec-
tor components: c = (c (1,1), c (1,2), · · · c (jx,jy), · · · c (�,�)).
The coordinates c (jx,jy) can take n values representing
the n possible orientations of the molecule at (jx, jy) ∈ L.
There are thus in total n�2 configurations, and for each of
them there is a probability. The jump matrix M works on
the space of these n�2 configurations. An eigenvector V(k)

is a vector with n�2 entries [V(k) ] c, where c runs through
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all possible configurations. We can thus depicture V(k) as
a function (the Bloch wave): V(k) : c → [V(k) ] c. Let
us operate M on an eigenvector. The first non-zero off-
diagonal entry in M corresponds to the possibility that c
undergoes a transformation to c+v (1,1). That will trans-
form the function from exp [ ı 2π

n (k−k0) · (c−k0) ], ∀c ∈ H
to exp [ ı 2π

n (k−k0) · (c+v (1,1)−k0) ], ∀c ∈ H, i.e. multiply
it by exp[ ı 2π

n ( k (1,1) −k (1,2) −k (1,�)−k (2,1) −k (�,1) +3 ) ].
Continuing this way with the possible transformations to-
wards c + v (1,2),..., c + v (�,�), including also the possible
transformations towards c−v (1,1), c−v (1,2),..., c−v (�,�),
and finally adding the diagonal term we obtain the result
announced in equation (15).

The whole part of the calculation involving the de-
termination of the structure factors remains the same as
for the case without correlations. In fact this calculation
(based on the evaluation of G = FS) is entirely defineded
by the values of the eigenvectors (S) and the Fourier trans-
forms of the configurations (F) and these are not changed
in the ergodic case. This means that equations (35, 37) of
reference [1] remain valid. Using the same notations as in
that paper, the Lorentzian L(�λk/τ, ω) will be associated
with |Gk | 2, where

Gk(1,1);k(1,2);...k(jx,jy);...k(�,�) =

1
n

�∑
jx=1

�∑
jy=1

n∑
c(jx,jy)=1

Fc(jx,jy)e
ı 2π

n (c(jx,jy)−1)(k(jx,jy)−1)

× eıQ·r(jx,jy)δ1k(1,1)δ1k(1,2) . . . δ1k(jx,jy−1)

× δ1k(jx,jy+1) . . . δ1k(�,�−1)δ1k(�,�) . (16)

Here Fc(jx,jy) is the Fourier transform of the molecule
(jx, jy) (with orientation c(jx,jy) ) if it were placed at
the origin. (The real position vector of this molecule is
r (jx,jy).) Consequently, the structure factor of the elas-
tic term remains the same. The structure factors of the
quasielastic terms remain also the same. Just the widths
of the Lorentzians have to be re-examined. Due to the
presence of the Kronecker symbols in equation (16) only
Lorentzians for k-values which have one single component
k (jx,jy) 
= 1 are contributing. In our example on the square
lattice, these are the Lorentzians with

λk = −2�2 + 2 (�2 − 5) + 10 cos
[

2π

n
( k (jx,jy) − 1 )

]
,

(17)

since in λk there are �2 − 5 terms with a vanishing
argument in the cosines and 5 terms where the argu-
ment of the cosines collapse to 2π

n ( k (jx,jy) − 1 ). We re-
cover thus the same Lorentzians with a width parameter
−2+2 cos [ 2π

n ( k (jx,jy)−1 ) ] as in the case without correla-
tions, except for the detail that the relaxation time τ that
occurs in the rate equations is being replaced in the final
result by a five times faster relaxation time τ/5, which
does not happen in the case without correlations8. With

8 But since we are dealing with clusters of 5 molecules, we
might originally have had the intuition to put a value 5 times

respect to the independent dynamics, the Q-dependences
of the intervening Lorentzians remain the same, only the
energy widths of the intervening Lorentzians are modified.
Conclusion: In our systems it is absolutely impossible to
appreciate from the Q-dependence alone of a signal due
to coherent neutron scattering if there are correlations or
otherwise! One can only hope that a comparison with in-
coherent data might still yield some clues. This result will
be general if the cardinal number #H of the set of possible
configurations H is not altered by the presence of correla-
tions (case (1) in the terminology of the Introduction). In
fact, the factor 5 in our example comes from the circum-
stance that our clusters contain five molecules, such that
v (jx,jy) will contain five terms. Due to this λk will contain
five terms that contain ( k (jx,jy)−1 ), each time combined
with other terms of the general type ±( k (j′x,j′y) − 1 ), that
vanish since k (j′x,j′y) = 1. All other contributions to λk are
devoid of terms in k (jx,jy).

We have not addressed the possibility illustrated by
the example of equation (10), where we have more than
one type of cluster. In principle this case is not differ-
ent in nature from the one embodied by equation (9),
since there we also have already ν > N , such that equa-
tion (9) represents two equations rather than one. Pro-
vided we have ergodicity we can derive for this model
from equation (11) with N = �2, ρ = 4, (∀j ∈ L ) (∀r ∈
{1, 2, 3, 4} ) (k0 ·vj,r = 0 ):

see equation (18) next page.

Expressing the selection rule from equation (16) that
only Lorentzians are contributing which correspond to a
k-value that contains a single component k (jx,jy) 
= 1, we
just retain the Lorentzians with

λk = −8�2 + 2 (4 �2 − 8) + 16 cos
[

2π

n

(
k (jx,jy) − 1

) ]
,

(19)

such that the widths are now again −2 +
2 cos [ 2π

n ( k (jx,jy) − 1 ) ], this time with a prefactor
8, since there are in total 16 different moves that involve
a jump of molecule ( jx, jy ).

We may note that we have already covered quite real-
istically looking possibilities. The task of taking into ac-
count correlations of this type on a whole lattice definitely

slower than in the uncorrelated case into the rate equations. If
we do not allow for this, then we would end up with a speed-up
of the quasielastic signal in the presence of reorienting clusters,
which is quite unphysical, as it should in principle be more dif-
ficult to move a set of molecules rather than a single molecule.
This use of a factor 5 based on a handwaving argument can
only be considered as a first approximation. We have no means
to elucidate this relationship any further, since the jump time
a single molecule would have had if its jumps had been in-
dependent is just not available to the experimentalist. There
could be a change in the jump time parameter between the
cases of correlated and uncorrelated jumps, but this cannot be
learned from an inspection of coherent scattering data alone,
since there is no change in the structure factors.
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λk = −8�2 +2 cos

�
2π

n

�
k (1,1) − k (1,2)

� �
+ 2 cos

�
2π

n

�
k (1,1) − k (1,�)

� �

+2 cos

�
2π

n

�
k (1,1) − k (2,1)

� �
+ 2 cos

�
2π

n

�
k (1,1) − k (�,1)

� �

+2 cos

�
2π

n

�
k (1,2) − k (1,1)

� �
+ 2 cos

�
2π

n

�
k (1,2) − k (1,3)

� �

+2 cos

�
2π

n

�
k (1,2) − k (2,2)

� �
+ 2 cos

�
2π

n

�
k (1,2) − k (�,2)

� �

...

+2 cos

�
2π

n

�
k (jx,jy) − k (jx+1,jy)

� �
+ 2 cos

�
2π

n

�
k (jx,jy) − k (jx−1,jy)

� �

+2 cos

�
2π

n

�
k (jx,jy) − k (jx,jy+1)

� �
+ 2 cos

�
2π

n

�
k (jx,jy) − k (jx,jy−1)

� �

...

+2 cos

�
2π

n

�
k (�,�) − k (1,�)

� �
+ 2 cos

�
2π

n

�
k (�,�) − k (�−1,�)

� �

+2 cos

�
2π

n

�
k (�,�) − k (�,1)

� �
+ 2 cos

�
2π

n

�
k (�,�) − k (�,�−1)

� �
. (18)

seemed daunting before we embarked on our method. The
most realistic case would probably involve a distribution
of cluster sizes, whereby each cluster has its own charac-
teristic relaxation time. E.g. on the square lattice we could
instead of equation (9), have relaxation times and clusters
∀( jx, jy ) ∈ L:

τ1 : v(jx,jy),1 = e(jx,jy) − e(jx+1,jy) − e(jx−1,jy)

− e(jx,jy+1) − e(jx,jy−1),

τ2 : v(jx,jy),2 = e(jx,jy) − e(jx+1,jy) − e(jx−1,jy)

− e(jx,jy+1) − e(jx,jy−1) + e(jx−1,jy+1) + e(jx+1,jy−1)

+ e(jx+2,jy) + e(jx−1,jy−1) + e(jx−2,jy) + e(jx,jy+2)

+ e(jx,jy−2) + e(jx+1,jy+1). (20)

where in the additional cluster we have included now
all members of the second-neighbour shell, assuming
that their rotional jumps are in phase with those of
the central molecule, i.e. in opposite phase with all
the members of the first-neighbour shell. This leads to
Lorentzians with a width parameter 1

τ1
λ

(1)
k + 1

τ2
λ

(2)
k ,

where λ
(1)
k is given by equation (15), while λ

(2)
k = −2�2 +

2
∑

(jx,jy)∈L cos [ 2π
n ( k (jx,jy) − k (jx+1,jy) − k (jx−1,jy) −

k (jx,jy+1) − k (jx,jy−1) + k (jx−1,jy+1) + k (jx+1,jy−1) +
k (jx+2,jy) + k (jx−1,jy−1) + k (jx−2,jy) + k (jx,jy+2) +
k (jx,jy−2) + k (jx+1,jy+1) − 5 ) ]. We can appreciate that in
general the width parameter for the Lorentzian Lk will be

ρ∑
r=1

1
τr


−2N + 2

∑
j∈L

cos
[

2π

n
Pj,r

] 
 , (21)

since each cluster, i.e. each term v j,r introduces
a term −2N + 2

∑
j∈L cos ( 2πPj,r/n ), where the

polynomial Pj,r in the k’s is obtained by replac-
ing each symbol e by a symbol k in the definition
of v j,r and adding −k0 ·vj,r. After combining with
δ1k(1,1)δ1k(1,2) . . . δ1k(jx,jy−1)δ1k(jx,jy+1) . . . δ1k(�,�−1)δ1k(�,�) in
the example of equation (20) we recover −4( 5

τ1
+

13
τ2

) sin2 [ π
n ( k − 1 ) ] provided S = H. (Here we have used

the fact that the set of values k (jx,jy) ∈ Z/n is the same
for all molecules (jx, jy), such that identical values com-
ing from different values of (jx, jy) can be regrouped in a
term where the k-value is simply noted as k). The more
different types of clusters one includes, the more likely
the configuration space S will cover the whole of H. In
fact, if also single-molecule jumps are allowed we forcedly
end up with S = H. Also for the final expression of
the Lorentzian widths after the application of the se-
lection rules it is not difficult to derive the general re-
sult: −4 [

∑ρ
r=1 (mr/τr ) ] sin2 [ π

n ( k − 1 ) ], where mr is
the number of molecules involved in cluster r. The use of
the quantity mr exploits the fact that in general the cor-
relations between the molecules will be symmetrical. The
most striking point is that all this follows almost effortless,
even for very complex situations, as the translational in-
variance on H establishes a kind of dictionary v j,r → Pj,r

which allows immediately to write down the eigenvalues,
and that these eigenvalues are further tremendously sim-
plified by the selection rule for the k-values.

8 Conclusion

We conclude: Apart from a possible renormalization of the
jump time, the signal in presence of correlations of the
type we considered is the same as in total absence of cor-
relations. In other words: Coherent quasielastic neutron
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scattering is unable to reveal possible correlations of the
type we considered between the rotational jumps of the
molecules. This is a clear, but non-trivial result. We may
call it paradoxical that coherent scattering cannot reveal
the type of correlations we considered, while incoherent
scattering can. The finding that the widths are renormal-
ized calls for caution in the interpretation of such widths
in the results of an experiment. One would be inclined to
interpret them as simple quantities corresponding to the
relaxation of a single molecule, while their real meaning
could be quite different. That is another important result
of our work.

The author would like to thank M. Duneau for fruitful discus-
sions.
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